

République du Sénégal Ministère de l'Education Nationale INSPECTION D'ACADEMIE DE TAMBACOUNDA CELLULE REGIONALE DE TAMBACOUNA ANNEE SCOLAIRE 2023-2024

COMPOSITION DU PREMIER SEMESTRE _ ÉPREUVE DE MATHÉMATIQUES

Niveau: Terminale L'1-L2 – Durée: 3 Heures

EXERCICE N°1

(14 points)

Partie A

1.	Quand dit-on qu'une suite (W_n) est arithmétique ?	(0,5pt)
2.	Soit la suite (W_n) définie par : $\begin{cases} W_1 = -2 \\ W_{n+1} = W_n + 7 \end{cases}$, $n \in \mathbb{N}$	<i>V</i> *.
	a. Calculer W_2 .	(0,75pt)
	b. Montrer que la suite (W_n) est arithmétique en précis	sant sa raison. (0.5pt)
	c. Exprimer la suite W_n en fonction de n .	(0,5pt)
	d. Calculer la somme $S = W_1 + W_2 + W_3 + \cdots + W_3$	(0,5pt)

Partie B

1. 2.	Quand dit-on qu'une suite (U_n) est géométrique ? Soient les suites (V_n) et (U_n) définies par : $\begin{cases} Vo = 1 \\ V_{n+1} = 2V_n + 3 \end{cases} et$	(0.5pt) $U_n = V_n + 3, \text{ n} \in IN$
	a. Calculer V_1 et U_0 . b. Démontrer que $U_{n+1}=2U_n$. En déduire la nature de la suite (U_n) . c. Exprimer U_n en fonction de n. En déduire V_n en fonction de n. d. Montrer que $U_1=8$, $U_2=16$ et $U_3=32$ e. Calculer U_8 .	(0.5pt + 0.5pt) $(0.5pt + 0.5pt)$ $(0.5pt + 0.5pt)$ $(0.25pt + 0.25pt + 0.25pt)$ $(0.25pt)$

Partie C

1.	Donner la formule du coefficient de corrélation linéaire r .	(0,5pt)
2.	Quand dit-on que la corrélation entre X et Y est forte ?	(0,25pt)

3. On considère la série statistique suivante avec $U_0=4,\ U_1=8$, $\ U_2=16$ et $\ U_3=32$.

X	U_0	U_1	U_2	U_3
Y	5	10	b	20

a.	Déterminer la valeur de b sachant que $\overline{Y} = 12,25$.	(1pt)
b.	Calculer la moyenne \overline{X} .	(1pt)
c.	On suppose que b =14. Calculer $Var(X)$ et $Cov(X, Y)$.	(1pt + 1pt)
d.	Déterminer la droite de régression de Yen X.	(1pt)

e. On suppose que la droite de régression de Y en X est : Y=0.5X+4.75. Donner une estimation de la valeur de Y pour $X=U_8$. (1pt)

EXERCICE N°2 (6 points)

1.	a.	Quand dit-on qu'un rée	el α est une racine d'un polynôme $f(x)$?	(0,5pt)
		_		

b. Soit $f(x) = x^3 + ax^2 - 11x + 12$.

Sachant que -3 est une racine de f(x), calculer la valeur de a. (0,5pt)

2. On considère le polynôme *P* définie par $P(x) = x^3 - 2x^2 - 11x + 12$.

a. Montrer que 1 est une racine de *P*. (0,5pt)

b. En déduire qu'il existe un autre polynôme g(x) tel que : P(x)=(x-1)g(x) (1pt)

c. Déterminer g(x) puis factoriser complètement P(x). (1pt +0,5pt)

3. On suppose que P(x) = (x-1)(x+3)(x-4).

a. Résoudre dans \mathbb{R} , l'équation : P(x) = 0. (0,5pt)

b. Résoudre dans \mathbb{R} , l'équation : P(3x + 1) = 0 (0,5pt)

c. Résoudre dans \mathbb{R} , l'inéquation : $P(x) \leq 0$. (1pt)

Bonne Chance !!